Fejér Type Inequalities for Harmonically-convex Functions with Applications
نویسندگان
چکیده
In this paper, a new weighted identity involving harmonically symmetric functions and differentiable functions is established. By using the notion of harmonic symmetricity, harmonic convexity and some auxiliary results, some new Fejér type integral inequalities are presented. Applications to special means of positive real numbers are given as well.
منابع مشابه
Hermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کاملOn new inequalities of Hermite–Hadamard–Fejer type for harmonically convex functions via fractional integrals
In this paper, firstly, new Hermite-Hadamard type inequalities for harmonically convex functions in fractional integral forms are given. Secondly, Hermite-Hadamard-Fejer inequalities for harmonically convex functions in fractional integral forms are built. Finally, an integral identity and some Hermite-Hadamard-Fejer type integral inequalities for harmonically convex functions in fractional int...
متن کاملSome extended Simpson-type inequalities and applications
In this paper, we shall establish some extended Simpson-type inequalities for differentiable convex functions and differentiable concave functions which are connected with Hermite-Hadamard inequality. Some error estimates for the midpoint, trapezoidal and Simpson formula are also given.
متن کاملSome Hermite-Hadamard Type Inequalities for Harmonically s-Convex Functions
We establish some estimates of the right-hand side of Hermite-Hadamard type inequalities for functions whose derivatives absolute values are harmonically s-convex. Several Hermite-Hadamard type inequalities for products of two harmonically s-convex functions are also considered.
متن کاملHermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015